Las Ciencias de la Computación, como disciplina vertebradora de la Informática, está siendo testigo de profundos cambios en la concepción de la tecnología de la Información: Internet, la Web 2.0, los nuevos modelos de computación, la complejidad de los nuevos sistemas de cómputo y de gestión de la información, etc. Los cambios se producen por los adelantos científico- tecnológicos que provienen a su vez de nuevas formas de entender la computación y del procesamiento de la información. Esta necesidad -la de avanzar en el conocimiento susceptible de innovación- se traduce en la exigencia de nuevos
resultados teóricos, científicos, experimentales y tecnológicos para sustentar la innovación (la "i" del proceso I+D+i). De esta forma la cadena de valor de la I+D+i se verá alimentada de nuevos resultados. Este interés es primordial dentro del plan nacional de I+D+I, entre cuyos objetivos está el reconocer y
promover la I+D como un elemento esencial para la generación de nuevos conocimientos
(
http://www.plannacionalidi.es/plan-idi-public/mostrarCarpetaComunicaciones.do).
La computación lógica, la computación bioinspirada y el avance en la Inteligencia Artificial son paradigmas donde se resuelven problemas tan variados como pueden ser de diseño de hardware y software (y su verificación), o la resolución práctica de problemas computacionalmente difíciles, que son demasiado complejos para ser resueltos de manera satisfactoria con sistemas clásicos. De hecho, los dos aspectos (los paradigmas antes mencionados y los problemas de alta complejidad a los que nos enfrentamos) crecen sinergéticamente puesto que nuestros sistemas son cada vez más complejos gracias a la investigación, y la investigación se nutre a su vez del planteamiento de problemas relacionados con la complejidad de los sistemas en los que estamos inmersos (problemas computacionales, biológicos, de la Web Social, de Ingeniería del Conocimiento, etc.). La aparición de software (y hardware) moderno y complejos algoritmos obliga a la comunidad científica a considerar asuntos claves como la seguridad de los sistemas (su verificación), su aplicabilidad, potencia computacional, así como la formalización de conceptos asociados al estudio de estos. Esto obliga a los científicos a cuidar con detalle no sólo el diseño de los sistemas, sino su especificación y la posibilidad de razonamiento con dicha especificación. Por ejemplo, es ampliamente admitido que sólo si estos sistemas son verificados por herramientas formales, se evita la aparición de ciertos errores ocultos que pueden ser en el futuro catastróficos, y que el diseño de nuevos paradigmas de computación (por ejemplo, los bioinspirados) deben de llevar aparejado su contrapartida lógica y computacional que permita estimar y comprender la potencia y la fiabilidad del cómputo.
Existen tres aspectos fundamentales en los que una formación adecuada del profesional o investigador capacitaría a éste para trabajar en el ámbito descrito anteriormente. Estos aspectos son el de la formalización (usando herramientas lógicas, computacionales y matemáticas), la abstracción de
procesos complejos para poder inspirar nuevos algoritmos, sistemas o soluciones y la capacidad de comprender nuevas formas de procesamiento de la información y/o conocimiento. Para la adecuada formación y capacitación se necesita, por tanto, una formación que refleje de manera adecuada el impacto en las Ciencias de la Computación e Inteligencia Artificial de los nuevos paradigmas que están
apareciendo.
Por tanto, desde una perspectiva profesional, el Máster forma profesionales altamente cualificados capaces de emprender y liderar proyectos de desarrollo para cubrir la demanda de innovación en estas nuevas tecnologías, por parte de la sociedad en general y del sector productivo en particular.